

2015 Marking Scheme

Grade	Mark R	equired	% aandi	achieving eng	4~			
Awarded	(/100)	%	% candidates achieving grade					
A	68+	68%		32.3%				
В	58+	58%		20.8%				
С	48+	48%		19.4%				
D	43+	43%		8.5%				
No award	< 43	<43%	19.0%					
Section:	Multiple	Choice	Extended Ar	Extended Answer Assignment				
Average Mark	13.4	/20	31.1 /60 14.1 ,			/20		

2015 National 5 Chemistry Marking Scheme									
MC Qu	Answer	% Pupils Correct	Reasoning						
1	A	92	Atomic number = number of protons ∴ atomic number = 26 Mass number = number of protons + number of neutrons ∴ mass number = 26 + 30 = 56						
2	В	88	Isotope Definition:number of protons atomic numberdifferent different mass number■ A W and X have different numbers of protons ∴ W and X not isotopes■ B W and Y have same number of protons but different numbers of neutrons■ C X and Y have different numbers of protons ∴ X and Y not isotopes■ D Y and Z have different numbers of protons ∴ Y and Z not isotopes						
3	D	67	 I A Cl⁻ ions have an electron arrangement of 2,8,8 I B S²⁻ ions have an electron arrangement of 2,8,8 I C Ar atoms have an electron arrangement of 2,8,8 I D Na⁺ ions have an electron arrangement of 2,8 						
4	С	55	 A Gas would not need to pass through water to escape B Gas would not pass through water (test tube would explode as pressure builds) C Gas passes through water and escapes test tube through tube at top D Gas would pass through water but test tube would explode as pressure builds 						
5	D	78	 A this structure shows metallic bonding B this structure shows ionic bonding C this structure shoes molecular covalent bonding D this structure shows covalent network bonding 						
6	С	51	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
7	С	46	Image: Control of the molten calcium would be a solid at 800°C as it melts at 842°C Image: Control of the molten calcium chloride Image: Contremolten calcium calcium chloride						
8	В	90	$2AI_{(s)} + 3Br_{2(l)} \longrightarrow 2AIBr_{3(s)}$						
9	A	69	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$						
10	В	59	 Image: A carbon dioxide is a non-metal oxide and forms an acid when added to water Image: B copper (II) oxide is insoluble in water and does not change the pH of water Image: C sodium oxide is a metal oxide and forms an alkali when added to water Image: D sulphur dioxide is a non-metal oxide and forms an acid when added to water 						
11	В	46	■ A hydrochloric acid + sodium carbonate → sodium chloride + water + carbon dioxide ■ B sodium chloride does not react with acids as it is a salt not a base ■ C hydrochloric acid + sodium hydroxide → sodium chloride + water						
12	С	88	 ▲D hydrochloric acid + sodium oxide → sodium chloride + water ▲A longest chain has five carbons ∴ name ends in pentane ▲B longest chain has five carbons ∴ name ends in pentane ▲C 5 carbons in main chain (pentane), two methyl groups on C₂ and C₃ ▲D numbering of carbons from right to left to give side groups lower numbering 						

			☑A correct	structure is draw	n.				
13	Α	81	🗷 B Shorten	ed structural form	nula would be: CH	I3CH2CH2CH(OH)C(CH ₃) ₃		
13 A		1 01	EC Shortened structural formula would be: CH3CH(CH3)CH(OH)CH(CH3)CH2CH3 D Shortened structural formula would be: CH3CH(CH3)CH(OH)CH2CH2CH2CH3						
			1						
			-	ormula of structure		C ₅ H ₈	C_6H_{10}		
			Answer						
14	D	77	A B	C_nH_{2n-4}	C4H4	C₅H ₆	C ₆ H ₈		
	U	///	В С	CnH2n+2 CnH2n	C4H10 C4H8	C5H12 C5H10	C ₆ H ₁₄ C ₆ H ₁₂		
			D	$C_n H_{2n-2}$	C4F18 C4H6	C5F110 C5H8	C6H12 C6H10		
				e and positive ions					
	-	/ -	-	d pair of electrons	•	•	covalent bondina		
15	C	67		•		•	elocalised electrons		
				bonding has deloc					
				-			ectrochemical series		
				is would flow from					
16		76	≥C electror	s would flow from	Y (magnesium) †	o X (copper)			
16	D	10	⊠D magnesi	um and copper wou	uld give the bigge	est voltage as th	ey are further		
			apart or	n electrochemical s	series and electr	ons flow from X	(magnesium) to Y		
			(copper)) as magnesium is h	nigher up ECS				
					ННН	ННИ	-		
				propene	$C \equiv C + C$	$= \dot{C} + \dot{C} = 0$	C		
					ĊH ₃ H Ċŀ	┨₃Ĥ ĊH₃ŀ	4		
17	Δ	70			• • • •				
1/	A	12				↓			
					ННН	HHH	1		
				poly(propene) —					
				pory(propene) —	$- \underline{C} - \underline{C} - \underline{C}$	-c-c-c-c			
			CH_3H CH_3H CH_3H						
				· · · – –	CFI311 CF				
			Η	$H \mid H \mid$	ннн	Н Н	Η Η		
	A	A 70							
17			C=	C -C-C	c-c-c-	C-C-	- <i>C</i> - <i>C</i> -		
1/									
			CH ₃	H CH₃H	$I CH_3H$	CH ₃ H	CH₃H		
			Monome	er	Polymer		Repeating Unit		
			Spectator ion	s appear chemically			al equation:		
	•	A 38		Na' appears on) both sides of equati	on			
18	A		2Na⁺a	$_{aq} + SO_4^{2} + Ba^{2}_{(aq)} + Ba^{2}_{(aq)}$	$_{a}$ + $2Cl_{(ac)}^{-} \rightarrow Bc$	$150_{4(s)} + 2Na^{+}_{(ac)}$	+ SO_4^{2-}		
							(uq)		
			<u> </u>		04 ²⁻ appears on both s	•			
				mes: ammonium nit	•		•		
19	D	33		nes: zinc sulphate	-		•		
			EC swap names: calcium chloride and nickel chloride are both very soluble						
			☑D swap names: sodium nitrate is very soluble but silver iodide is insoluble Potassium chloride is colourless ∴potassium ions and chloride ions are colourless.						
20		61			•		yellow colour must		
20	U			e chromate ion.			/		
L		1	L						

2015 National 5 Chemistry Marking Scheme							
Long Qu	Answer	Reasoning					
1a	0.8 cm ³ s ⁻¹	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{120 - 96}{90 - 60} = \frac{24}{30} = 0.8 \text{ cm}^3 \text{ s}^{-1}$					
1b	Graph showing:	 Both axes labelled with units (1 mark) Both scales (1 mark) Graph drawn accurately (1mark) points must be plotted correctly and line drawn, either by joining the dots or by a smooth curve or curve of best fit The line must be drawn from the origin. 					
2a	Neptunium	$^{241}_{95}$ Am $\rightarrow ^{4}_{2}$ He + $^{237}_{93}$ Np					
2b	alpha	RadiationStopped byChargeAtomic NumberMass NumberAlphapaperPositive24BetaaluminiumNegative-10GammaleadNo chargeGamma radiation is a wave not a particle					
2c(i)	1g	Time (hr) Mass (g) 0 8 16 4 32 2 48 1					
2c(ii)	Longer half-life	Americium-242 has too short a half-life to be effective in a smoke-detector as the amount of Americium would half every 16 hours. It would not be operational within days of manufacture. Americium-241 has a half-life of 432years and will be working for many lifetimes but must be disposed of carefully.					
3a (i)	hydroxyl	Hydroxyl groups are the functional group found in all alcohols and have the structure -OH or -O-H					
3a (ii)	Esters or fats or oils	Fats and oils are triglycerides with three ester bonds between the original glycerol molecule and three fatty acids					
3b(i)	Butanoic acid	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
3b(ii)	Bromine decolourises	Bromine solution is an yellow/orange colour contains molecules of Br ₂ . The solution will decolourise as the bromine adds across the double bond. Only C=C double bonds will decolourise bromine solution.					
4a	Diagram showing:	H S H or HS S H					
4b	hydrogen hydroxide	AcidsHydrogen ion concentration greater than hydroxide ion concentrationNeutralHydrogen ion concentration equal tohydroxide ion concentrationAlkaliHydrogen ion concentration less thanhydroxide ion concentration					

4c Answer to include: Water (must mention when dissolved in water (must mention when dissolved in water neutrali	ns an alkali when dissolved in ater						
<u>2 Mark</u> : Calcium oxide in water <u>neutrain</u>	2 nd Mark: Calcium oxide in water <u>neutralises</u> sulphur dioxide (must						
mention the word neutralise) For the state of the state	s where nitrogen and hydrogen						
5a Iron react to become ammonia NH3.							
	400 500 600 700						
5b 52-56 % Yield 10 18 26 Difference 8 8 8 8	32 40 8 (8) (8)						
Estimate	48 56						
Higher the temp	action where equilibrium is						
DC the lower the yield eventually achieved where the rate of	•						
equals the rate of the breakdown of	•						
5d Low Temperature In top table, the higher the pressure	5 1						
High Pressure In bottom table, the lower the tempe	· · ·						
99% of carbon dioxide is captured							
6a 3 1% of 300tonnes = 1/100	x300 = 3tonnes						
Write down Valency below Put in Cross each element's symbol Arrows							
6b Fe ₂ O ₃ Fe O Fe	,O						
	Fe ₂ O ₃						
	2						
Exothermic Chemical reaction which gives	Exothermic Chemical reaction which gives out energy						
6c exothermic Endothermic Chemical reaction which gives							
- Boil off the water The solution of copper sulphate is boiled in an evaporating basin u							
7a Boll off the water almost dry. The Bunsen burner is turned	almost dry. The Bunsen burner is turned off just before dryness and the						
	water						
(using a Bunsen burner) remaining heat evaporated the remaining 1mol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63.							
(using a Bunsen burner) remaining heat evaporated the remaining 1mol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no of mol = <u>mass</u> = -	5+32+64 = 159.5g						
(using a Bunsen burner)remaining heat evaporated the remainingImol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63.no. of mol = mass gfmgfm1	5+32+64 = 159.5g 3.19 159.5 = 0.02mol						
(Using a Bunsen burner) remaining heat evaporated the remaining 1mol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. mo. of mol = mass = -	5+32+64 = 159.5g 3.19 159.5 = 0.02mol						
(using a Bunsen burner)remaining heat evaporated the remainingremaining heat evaporated the remaining1mol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63.no. of mol = no. of mol = gfm	5+32+64 = 159.5g 3.19 159.5 = 0.02mol						
Tb O.2 remaining heat evaporated the remaining remaining heat evaporated the remaining imol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = mass gfm = -1 concentration = no. of mol volume No. of mol = mass gfm Method A incomplete combustion/Less oxygen	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ Method B nplete combustion/more oxygen						
(using a Bunsen burner) remaining heat evaporated the remaining Tb (using a Bunsen burner) remaining heat evaporated the remaining 1mol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = mass gfm = -1 no. of mol = mass gfm = -1 -1 concentration = no. of mol volume -1 Method A incomplete combustion/Less oxygen concentration (more) heat loss to surroundings less	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ $\frac{\text{Method B}}{\text{mplete combustion/more oxygen}}$ s/no heat loss to surroundings						
(using a Bunsen burner) remaining heat evaporated the remaining Tb 0.2 Imol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = mass gfm gfm = concentration = no. of mol volume Method A incomplete combustion/Less oxygen concentration (more) heat loss to surroundings less no draught shield/no insulation	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ Method B nplete combustion/more oxygen s/no heat loss to surroundings tter insulation						
(using a Bunsen burner) remaining heat evaporated the remaining Tb (using a Bunsen burner) remaining heat evaporated the remaining 1mol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = mass gfm = -1 no. of mol = mass gfm = -1 -1 concentration = no. of mol volume -1 Method A -1 -1 incomplete combustion/Less oxygen con (more) heat loss to surroundings less no draught shield/no insulation	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ $\frac{\text{Method B}}{\text{mplete combustion/more oxygen}}$ s/no heat loss to surroundings						
(using a Bunsen burner)remaining heat evaporated the remaining remaining heat evaporated the remaining 1mol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = $\frac{mass}{gfm} = -\frac{1}{12}$ concentration = $\frac{no. of mol}{volume}$ 7b0.2Method A8aOne answer from:Method AIncomplete combustion/Less oxygen glass is a poor conductorIncomplete conductor	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ Method B nplete combustion/more oxygen s/no heat loss to surroundings tter insulation						
The image is a bunser burner)remaining heat evaporated the remaining remaining heat evaporated the remaining image is a burner)The image is a burner)Image is a burner)The image is a burner is a burner)Image is a burner is	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ $\frac{\text{Method B}}{\text{mplete combustion/more oxygen}}$ $\frac{1}{3} \text{ (no heat loss to surroundings)}$ $\frac{1}{3} \text{ there insulation}$ $\frac{1}{3} \text{ (platinum is a better conductor)}$ $\frac{1}{3} \text{ mass} \times \Delta T$ $\frac{1}{3} \text{ change in}$						
(using a Bunsen burner)remaining heat evaporated the remaining remaining heat evaporated the remaining lmol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63.7b0.2Imol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63.no. of mol =mass gfm= -1concentration =no. of mol volume8aOne answer from:Method A incomplete combustion/Less oxygen (more) heat loss to surroundings glass is a poor conductor flame too far away from beaker8b14.2 kJEnergyspecific heat capacityx	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ $Method B$ nplete combustion/more oxygen s/no heat loss to surroundings tter insulation tal/platinum is a better conductor $\mathbf{m} \times \Delta T$ change in						
(using a Bunsen burner)remaining heat evaporated the remaining remaining heat evaporated the remaining Imol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = $\frac{mass}{gfm} = -\frac{1}{12}$ concentration = $\frac{mo. of mol}{volume}$ 8aOne answer from:Method A incomplete combustion/Less oxygen (more) heat loss to surroundings less no draught shield/no insulation flame too far away from beaker8b14.2 kJEh=c	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ $\frac{\text{Method B}}{\text{mplete combustion/more oxygen}}$ s/no heat loss to surroundings tter insulation tal/platinum is a better conductor $\frac{\text{m}}{\text{mass}} \times \frac{\Delta \text{T}}{\text{change in}}$						
TbO.2Imol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = $\frac{mass}{gfm}$ = $-\frac{1}{12}$ concentration = $\frac{mo. of mol}{volume}$ 8aOne answer from:Method A incomplete combustion/ Less oxygen (more) heat loss to surroundings glass is a poor conductor flame too far away from beaker8b14.2 kJEh Eh Eh Eh Eh Eh Eh Eh Eh Eh Eh Eh Eh 	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } 1^{-1}$ $Method B$ $mplete combustion/more oxygen$ $s/no heat loss to surroundings$ $tter insulation$ $tal/platinum is a better conductor$ $m \times \Delta T$ $mass \times \Delta T$ $change in temperature$ 0.1×34						
Tb(using a Bunsen burner)remaining heat evaporated the remaining remaining heat evaporated the remaining lmol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = $\frac{mass}{gfm} = \frac{1}{10}$ 	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } 1^{-1}$ $Method B$ $mplete combustion/more oxygen$ $s/no heat loss to surroundings$ $tter insulation$ $tal/platinum is a better conductor$ $m \times \Delta T$ $mass \times \Delta T$ $change in temperature$ 0.1×34						
(using a Bunsen burner)remaining heat evaporated the remaining remaining heat evaporated the remaining Imol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = $\frac{mass}{gfm} = -\frac{1}{12}$ concentration = $\frac{mo. of mol}{volume}$ 8aOne answer from:8aOne answer from:8b14.2 kJ8b14.2 kJ9aOres are compounds of metals from9aore9aOres are compounds of metals from	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } 1^{-1}$ $Method B$ $mplete combustion/more oxygen$ $s/no heat loss to surroundings$ $tter insulation$ $tal/platinum is a better conductor$ $m \times \Delta T$ $mass \times \Delta T$ $change in temperature$ 0.1×34						
(using a Bunsen burner)remaining heat evaporated the remaining remaining heat evaporated the remaining Imol CuSO4 = (1x63.5) + (1x32) + (4x16) = 63. no. of mol = $\frac{mass}{gfm} = -\frac{1}{10}$ concentration = $\frac{no. of mol}{volume}$ 8aOne answer from:8bIAL2 kJ8b14.2 kJ9aore9aore9aoreore and custod.	$5+32+64 = 159.5g$ $\frac{3.19}{159.5} = 0.02 \text{ mol}$ $= \frac{0.02}{0.1} = 0.2 \text{ mol } l^{-1}$ $Method B$ nplete combustion/more oxygen s/no heat loss to surroundings tter insulation tal/platinum is a better conductor $m \times \Delta T$ mass × ΔT mass × ΔT change in temperature 0.1 × 34 change in temperature 0.1 × 34						

	-	Solid ionic com	pound	s are un	able to	condu	ct as the ions	are
9b(ii)	Ions	locked tightly in an ignic lattice. On melting or dissol						
	free/able to move	water, ions become free to move and will conduct.						
		Agent	Oxidation/Reduction			Electrons]	
		Oxidising Agent	Agent is reduced itself Agent		Agent	gains electrons		
		Reducing Agent Agent is oxidised itself Agent loses				loses electrons		
9c	Magnesium	$M_{2} \longrightarrow M_{2}^{2+} + 2^{-1}$						
		Mg → Mg ²⁺ + 2e ⁻ Magnesium loses electrons, is oxidised itself and acts as a						
		Magnesium loses electrons, is oxidised itself and acts as a reducing agent						
		3 mark answer 2 mark answer 1 mark answer						
		Demonstrates a good			es a <u>reasonabl</u>		Demonstrates a <u>limite</u>	
10	Open	understanding of the che involved. A good comprehe	-	understandir involved, mał	ng of the cher king some	nistry	understanding of the c involved. The candidat	
10	Question Answer	the chemistry has provide logically correct, including		statement(s) which are relevant to the situation, showing that the			some statement(s) which are relevant to the situation, showing	
	to include:				roblem is understood.		that at least a little of the chemistry within the problem is	
		these to respond to the p					understood.	
11a	2,8,6		CI(q)		$C ^{+}(q)$	+	e⁻	
110	2,0,0	2	2,8,7		2,8,6			
11b		The symbol for			•			
110	$Mg(g) \longrightarrow Mg^{+}(g) + e^{-}$	Mg for Magnesium. This must always be in the gas state,						
		 Alkali Metals in group 1: lithium, sodium and potassium: as you go down group 1 ionisation energy decreases. 						
		Alkali Metal First Ionisation Energy (kJ mol ⁻¹) 526 502 425						
11c	decreases	Halogens in group 7: fluorine, chlorine and bromine:						
		As you go down group 7 ionisation energy decreases.						
		Halogen F Cl Br First Ionisation Energy (kJ mol ⁻¹) 1690 1260 1150						
		•	•		\mathbf{a}			
12a	but-2-ene	but - 2 - ene						
120	Dui-2-ene		Ч	, ,	_	Ľ		
		4	carbons	C=C	on 2 nd carb	on C=0	C double bond	
	Same formula but	Isomer: same chemi						
12b	different structure	Both structures have the formula C4H8 but belong to different homologous series. Structure A is a alkene with a C=C double bond and Structure B is a						
		cycloalkane with a ring of carbons.						
		H	H H	l		H H	H H H	ł
		н—с́—с=с−	-ċċ	—н	Н—	-c—c	ccc	с—н
12	Any structure of	нн	НН	0	r	Ĩ		
12c	3-methylpent-2-ene	H—C-	_н			H F	• н н	ł
	or 2-ethylbut-1-ene						CH ₂	
		H 2 3-methylpent-2-ene 2-ethylbut-1-ene						
							· ·	
10		The carboxyl group -COOH is the functional						
13a	Carboxyl group	group found in carboxylic acids. Succinic acid contains two carboxyl groups.						
		acid cont	ains tv	vo carbo	xyi grou	ps.	carboxyl	group

[· · · · · · · · · · · · · · · · · · ·			
13b(i)	Condensation	Condensation reactions take place between carboxyl groups and hydroxyl groups with water removed as the groups join together. $O = \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $					
13b(ii)	Diagram showing:	НН ОННО -O-C-C-O-C-C-C- НН НН					
14a(i)	Carbon monoxide	TiO ₂ + 20	$CI_2 + 2C \longrightarrow TiC$	Cl ₄ + 2CO			
14a(ii)	Covalent	As titanium (IV) chloride is a compound of a metal and non-metal, your first assumption would be that it contains ionic bonding. However, ionic compounds are always solids at room temperature with high melting points and conduct electricity when in the liquid/molten state. Titanium (IV) chloride contains covalent bonding as it is a liquid at room temperature and does not conduct electricity in the liquid state. Metallic bonding can be ruled out as it does not conduct electricity in the liquid state.					
14b	Distillation	Distillation separates titanium (IV) chloride from its impurities as distillation separates chemicals with different boiling points. The titanium (IV) chloride would evaporate and then condensed in the distillation apparatus leaving the impurities behind.					
14c	recycle/reuse sodium or chlorine	Electrolysing molten sodium chloride would produce sodium metal at the negative electrode and chlorine gas at the positive electrode. Chlorine gas is needed for the reaction where TiO ₂ is converted into TiCl ₄ . Sodium metal is required to displacement reaction to extract Ti from TiCl ₄ .					
15a	16	Ignore Titration 1 as it is the rough titre and is not designed to be accurate Average titre = $\frac{15.9 + 16.1}{2} = \frac{32.0}{2} = 16.0 \text{ cm}^3$					
15b	0.0032	no. of moles = volume x concentration = 0.016 litres x 0.005 mol L ¹ = 0.00008 mol $C_{6}H_{8}O_{6} + I_{2} \longrightarrow C_{6}H_{6}O_{6} + 2HI$ $1 \text{mol} \qquad 1 \text{mol} \qquad 0.00008 m$					
16	Open Question answer containing:	3 mark answer Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	2 mark answer Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	1 mark answer Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			